
Fast Depth Densification for Occlusion-aware Augmented Reality

ALEKSANDER HOLYNSKI, University of Washington*

JOHANNES KOPF, Facebook

(a) AR Overlay using Sparse SLAM Reconstruction (b) Occlusion-aware AR with Our Densification

Fig. 1. Left: SLAM systems track only a few sparse point features. This limits AR effects to pure overlays because the scene geometry is not known for most

pixels. Right: Our technique propagates the sparse depth to every pixel to produce dense depth maps. They exhibit sharp discontinuities at depth edges but

are smooth everywhere else, which makes them particularly suitable for occlusion-aware AR video effects.

Current AR systems only track sparse geometric features but do not compute
depth for all pixels. For this reason, most AR effects are pure overlays that
can never be occluded by real objects. We present a novel algorithm that
propagates sparse depth to every pixel in near realtime. The produced depth
maps are spatio-temporally smooth but exhibit sharp discontinuities at depth
edges. This enables AR effects that can fully interact with and be occluded by
the real scene. Our algorithm uses a video and a sparse SLAM reconstruction
as input. It starts by estimating soft depth edges from the gradient of optical
flow fields. Because optical flow is unreliable near occlusions we compute
forward and backward flow fields and fuse the resulting depth edges using
a novel reliability measure. We then localize the depth edges by thinning
and aligning them with image edges. Finally, we optimize the propagated
depth smoothly but encourage discontinuities at the recovered depth edges.
We present results for numerous real-world examples and demonstrate the
effectiveness for several occlusion-aware AR video effects. To quantitatively
evaluate our algorithm we characterize the properties that make depth maps
desirable for AR applications, and present novel evaluation metrics that
capture how well these are satisfied. Our results compare favorably to a set
of competitive baseline algorithms in this context.

CCS Concepts: •Computingmethodologies→Reconstruction;Mixed
/ augmented reality; Computational photography; Video segmentation;

*This work was done while Aleksander was working as an intern at Facebook.

Authors’ addresses: Aleksander Holynski, University of Washington*, holynski@cs.
washington.edu; Johannes Kopf, Facebook, jkopf@fb.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/11-ART194
https://doi.org/10.1145/3272127.3275083

Additional Key Words and Phrases: Augmented Reality, 3D Reconstruction,
Video Analysis, Depth Estimation, Simultaneous Localization and Mapping

1 INTRODUCTION

Augmented reality (AR) is a transformative technology that blurs
the line between reality and the virtual world by enhancing a live
video stream with interactive computer generated 3D content. AR
has many applications ranging from bringing virtual monsters into
your bedroom (gaming), to previewing virtual furniture in your
living room (shopping), or even breaking down the mechanics of
your car’s engine (learning), among many others.
Recent advancements in mobile hardware and tracking technol-

ogy enable consumers to experience AR directly on their cell phone
screens. This is typically powered by SLAM algorithms, such as
Google’s ARCore1 and Apple’s ARKit2, which track a few dozen
scene points in 3D and compute the 6-DOF trajectory of the device.
Once the camera pose is known, we can overlay 3D content on the
image, such as face masks or artificial animated characters.

However, since the tracked points are sparse, these effects cannot
interact with the scene geometry, because it is not known for most
pixels. This means that virtual objects can never be occluded by real
objects (e.g., the Pusheen plush doll in Figure 1a). The absence of
occlusion is often jarring and can break the illusion of reality.

In this work we propose a method that overcomes this limitation
by densifying the sparse 3D points, so that depth is known at every
pixel. This enables a much richer set of effects that fully interact
with the scene geometry and make use of occlusions (Figure 1b).

Multi-view stereo (MVS) methods can be used to reconstruct
dense geometry from multiple images, but they are often not the
1https://developers.google.com/ar/
2https://developer.apple.com/arkit/

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275083

194:2 • A. Holynski and J. Kopf

best tool to achieve our goal, since they often (1) are not designed for
video sequences and produce temporal artifacts such as flickering,
(2) produce noisy results in untextured regions, (3) leave holes when
omitting unconfident pixels, (4) frequently suffer from misaligned
depth edges (“edge-fattening”), and (5) are prohibitively slow.

In addition, the requirements for dense, occlusion-aware AR appli-
cations are notably different from MVS. While the primary measure
that these methods optimize is geometric accuracy of depth and nor-
mals, this property is less critical for AR. Instead, we are interested
in a different set of objectives:

Sharp discontinuities: depth edges must be sharp and well-aligned
with image edges to produce convincing occlusions.

Smoothness: away from discontinuities, and in particular across
texture edges, the depth should be smooth to avoid spurious
intersections with virtual objects.

Temporal coherence: the depth needs to be consistent across frames
to avoid flickering.

Completeness: every pixel must have an assigned depth, so we can
apply the effect everywhere.

Speed: for real-time AR effects we need to compute results at fast
rates and with little delay.

We designed our method to satisfy all of these objectives. It takes
the sparse points computed by a SLAM system as input and propa-
gates their depths to the remaining pixels in a smooth, depth-edge
aware, and temporally coherent fashion. The algorithm starts with
computing a soft depth edge likelihoodmap bymerging forward and
backward optical flow fields using a novel reliability measure. Using
a future frame causes a slight delay in the output, which depends on
keyframe spacing, but is enforced to be at most 116ms in our experi-
ments. A variant of our method can be run in a fully causal fashion,
i.e., without any latency, at the expense of somewhat lower result
quality. The depth edges are thinned and aligned with the image
edges using an extension of the Canny edge detector that takes the
soft depth edges into account. Finally, we densify the sparse points
by optimizing the propagation of their depths smoothly (except at
depth edges) and in a temporally coherent manner.
Our method runs at near-realtime rates on a desktop machine,

and modern mobile processor benchmarks indicate that a fast mo-
bile phone implementation should also be possible. We have tested
our method on a variety of video sequences, and compared against
a set of state-of-the-art baseline algorithms. We also designed eval-
uation metrics that capture the objectives stated above and perform
extensive numerical evaluations. We demonstrate the effectiveness
for AR applications with two example effects that make use of dense
depth.

2 PREVIOUS WORK

In this section, we highlight some of the work in related areas.

SLAM. Simultaneous localization and mapping algorithms [Engel
et al. 2018, 2014; R. Mur-Artal and Tardos 2015] compute the camera
trajectory as well as a geometric scene representation from a video
stream. This problem is related to Structure from Motion, but a
fundamental difference is that SLAM techniques are optimized for

realtime applications and specificially designed for video sequences.
SLAM algorithms are typically used for tracking in AR applications.
Most methods, however, track only a select set of independent

image features, which results in a sparse scene representation and
limits AR effects to pure overlays.

Dense SLAM. Some SLAMmethods attempt to reconstruct a dense
depth map that covers all pixels in the video [M. Pizzoli 2014; New-
combe et al. 2011]. These methods are often slower, however, and
may be less accurate (see discussion Engel et al.’s paper [2018]). Sim-
ilar to MVS methods (discussed below), they are also not explicitly
designed to have sharp depth discontinuities that are well-aligned
with image edges, which might result in artifacts at occlusion con-
tours.
There are also intermediate, semi-dense approaches that recon-

struct a subset of pixels [Engel et al. 2014]. However, these methods
have the same limitation w.r.t. virtual object occlusions as sparse
methods.

MVS. Multi-view stereo methods [Furukawa and Hernández 2015;
Seitz et al. 2006] compute dense geometry from overlapping images.
However, as stated in the introduction, their depth maps are highly
optimized for geometric accuracy, but might not work well for AR
applications. For example, most algorithms drop uncertain pixels
(e.g., in untextured areas) and edges in the estimated geometry are
often not well aligned with image edges.

Video-based Depth Estimation. Most stereo algorithms are not
designed to produce temporally coherent results for video sequences,
however, there are some exceptions. Zhang et al. [2009] optimize
multiple video frames jointly with an explicit geometric coherency
term. However, similar to many MVS algorithms the runtime is
prohibitively slow for our applications (several minutes per frame).

Hosni et al. [2011] use aweighted 3D box filter to spatio-temporally
smooth cost volumes before extracting disparity values. Richardt et
al. [2010] use instead a bilateral grid to spatio-temporally smooth
a cost volume. Both methods require a desktop GPU to achieve in-
teractive speeds. Stühmer et al [2010] estimate depth from multiple
optical flow fields. However, optical flow estimation is unreliable in
untextured regions, and it is slow at high quality settings.

Edge-aware Filtering. Sparse annotations, such as depth from
SLAMpoints, can be densified using edge-aware filtering techniques.
These techniques are typically very fast and differ in the kind of
smoothness constraints they impose on the solution.

Levin et al. [2004] propose a quadratic optimization to propagate
color scribbles on a grayscale image. A similar technique can be
used to propagate depth from sparse points [Shan et al. 2014].

A joint bilateral filter [Petschnigg et al. 2004] can also be used to
propagate sparse constraints while respecting intensity edges. The
bilateral solver [Barron and Poole 2016] can be used in a similar way,
e.g., in the Google Jump system [Anderson et al. 2016] it smoothes
optical flow fields in an edge-aware manner.
Weerasekera et al. [2018] use the output of a single-view depth

estimation network to propagate sparse depth values. Similarly,
[Zhang and Funkhouser 2018] constrain the propagation of sparse
depth values using the output of a neural network which predicts

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

Fast Depth Densification for Occlusion-aware Augmented Reality • 194:3

(a) Input frame
(Full HD, 2 megapixels)

(b) SLAM points
(DSO-SLAM, 13.8ms)

(c) Flow to future / past
(DIS-FLOW, 0.4ms)

(d) Soft depth edges
(Section 4.2, 0.2ms)

(e) Localized depth edges
(Section 4.3, 12.6ms)

(f) Densification depth
(Section 4.4, 21.3ms)

Fig. 2. Overview of the major algorithm stages. Given an input video (a) we use existing methods to compute sparse SLAM points (b) and optical flow to a

nearby future and past frame (c). We fuse the most reliable responses from the forward and backward flow fields and compute “soft” depth edges that are not

well-localized, yet. We thin, localize, and binarize the depth edges (e). Finally, we propagate the sparse SLAM point depths to every pixel in a depth-edge-aware

manner (f).

surface normals and occlusion boundaries. Both methods are tested
on desktop GPUs, and run at less than interactive framerates.
Park et al. [2014] describe techniques for upsampling and hole-

filling depth maps produced by active sensors using constrained
optimization. Bonneel et al. [2015] extend edge-aware filtering to
video and add temporal constraints to reduce flickering. A survey of
additional densification methods can be found in [Pan et al. 2018].

The drawback of many of these image-guided filtering techniques
is that the propagation stops not only at depth edges, but also at
texture edges. This can lead to false discontinuities in the depth
maps. Additionally, many of these methods are prohibitively slow
for real-time AR applications. We compare our method to three of
the above filtering techniques in Section 5.4.

3 OVERVIEW

The inputs to our algorithm are (1) a sequence of video frames,
typically captured with a cell phone camera, (2) camera parameters
at every frame, and (3) sparse depth annotation (at least for some
frames). We use an existing SLAM system [Engel et al. 2018] to
compute (2) and (3). Our algorithm propagates the sparse depth
annotation to every pixel in near realtime and with only a short
delay of a few frames.

As mentioned before, the criteria that make depth maps desirable
for AR applications are different from the goals that most MVS algo-
rithms are optimized for, since we neither require correct absolute
(or metric) depth, nor do we require perfect object normals. Rather,
our algorithm is designed to produce approximately correct depth
that satisfies the criteria stated in Section 1:

Discontinuities: we estimate the location of depth edges and produce
sharp discontinuities across them.

Smoothness: our depth maps are smooth everywhere else, in partic-
ular across texture edges.

Temporal coherence: we optimize consistency of depth over time.
Completeness: by design we propagate depth to every pixel.

Speed: our algorithm takes on average 48.4ms per frame and the
output is delayed by at most 116ms. A causal variant of the
method has no delay.

Our algorithm proceeds in three stages:

(1) Estimate soft depth edges (Figure 2d, Section 4.2): First, we
examine the gradient of optical flow fields to estimate “soft”
depth edges that are not well-localized, yet. Because optical
flow is unreliable near occlusions we compute flow fields to a
future and past frame (Figure 2c) and fuse the resulting depth
edges using the observation that edges in the flow gradient
are only reliable when the flow vectors are diverging.

(2) Localize depth edges (Figure 2e, Section 4.3): Next, we localize
the depth edges using a modified version of the Canny edge
detector [Canny 1986]. This procedure thins the edges and
aligns themwith the image gradient, so that they are precisely
localized on the center of image edges. It uses hysteresis to
avoid fluctuations in weak response regions.

(3) Densification (Figure 2f, Section 4.4): Finally, we propagate the
sparse input depth to every pixel by solving a Poisson problem.
The data term of the problem is designed to approximate the
sparse input depth and to encourage temporal continuity,
while the smoothness term encourages sharp discontinuities
at the detected depth edges and a smooth result everywhere
else.

4 METHOD

4.1 Camera Parameters and Sparse Depth

The first stage of our algorithm computes a “sparse reconstruction”
using a SLAM system. This computes two entities that are required
for the subsequent stages:

(1) Extrinsic camera parameters for every frame (i.e., rotation and
translation); we assume the intrinsic parameters are known.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

194:4 • A. Holynski and J. Kopf

(a) Past nearby frame Ipast (b) Current frame I (c) Future nearby frame Ifut

(d) Flow I → Ipast (e) Occluded in nearby (f) Flow I → Ifut

(g) Past grad-mag Mpast (h) Reliability-fused MF (i) Future grad-mag Mfut

Fig. 3. For a current frame from the Kitchen sequence (b) we select two

surrounding nearby frames (a,c) and compute optical flow (d,f). The flow

fields are unreliable near pixels in the current frame that are occluded in

the nearby frames (e, with manual annotation for illustration). The depth

edges from the corresponding gradient magnitude images are unreliable

as well (g,i). Using our reliability measure (see Figure 4) we can compute a

fused result that contains only the most reliable pixels (h).

(2) Sparse 3D scene points (Figure 2b). Our algorithm will prop-
agate their depth to the remaining pixels in a later stage to
generate the dense result.

We experimented with various existing systems and settled on
using DSO-SLAM [Engel et al. 2018], since it is fast and robust.
Since DSO only provides 3D points at intermittent key frames, we
reproject these to the surrounding non-key frames, so every frame
has a sparse depth source.

4.2 Soft Depth Edges

The goal of this stage is to find “soft” depth edges, which means
that they are defined by a continuous strength value and do not
need to be accurately localized (Figure 2d). They will be thinned,
binarized, and aligned with the image edges in the next section. For
performance reasons we compute the soft edges on downscaled
images (1/4 in each dimension) and upscale the results at the end of
the stage.

We start by selecting a nearby frame with sufficiently large base-
line to the current frame, and compute a dense optical flow field.
In the flow field we can identify depth edges at places where the
gradient magnitude is high, because sudden changes in depth imply

corresponding changes in the flow, due to parallax (Figure 3, bottom
row).
Unfortunately, optical flow is unreliable around pixels that are

occluded in the nearby frame (compare Figures 3d and 3f with Fig-
ure 3e and note how only one of the two edges of the object are
resolved in each flow image, respectively). We alleviate the situation
by computing flow w.r.t. two nearby frames, one backward and one
forward in time. These tend to have different sets of pixels that
are unreliable (see manual annotations in Figure 3e). We fuse the
two depth edge maps using a novel optical flow reliability mea-
sure, described below, to achieve a result that contains the correct
edges from both (Figure 3h). In the supplementary material, we
show a comparison of the reliability merging and the more naive
approach of taking the per-element gradient maximum. As can be
seen in the Bones sequence, the naive approach drastically increases
the noise in the occlusion response, and thus the occlusion edges
are less prominently defined. We also provide comparisons with
off-the-shelf boundary estimation methods, such as [Dollár et al.
2006], showing that our use of flow gradients more frequently dis-
ambiguates occlusion boundaries from texture edges, such as in the
soft edge response of the Georgian sequence.

Selecting Nearby Frames. The nearby frames need to provide suf-
ficient translational motion so we achieve a strong flow gradient
response and reduce noise. There are many sensible ways in which
these could be selected; we use the following simple heuristic. We
compute the spatial distance between the camera positions of the
two DSO key frames that bracket the current frame. Then, we look
forward and backward from the current frame and select the first
frame in either direction whose camera position is at least half that
distance away.

Optical Flow. We compute optical flow using DIS Flow [Kroeger
et al. 2016], because it is one of the fastest available methods. We use
the implementation in OpenCV and chose the ultrafast preset.
Since the results exhibit a block pattern we smooth it using a 7 × 7
median filter.

Computing the Gradient Magnitude. Let F be one of the two flow
images from the current frame to one of the nearby frames. We
compute the gradient magnitudeM , at every pixel p selecting the x
or y component, whichever provides the higher value:

M(p) = max
(∇Fx (p)1, ∇Fy (p)1) . (1)

Fusing Forward and Backward Results. As described above, differ-
ent sets of pixels are reliable in the two flow fields. We observe that
places where the edge-normal flow projections f are diverging are
generally more reliable; this situation occurs at disocclusions, when
both pixels are visible in the nearby image. The opposite is true for
converging flow projections; this indicates an occlusion: one of the
two pixels is not visible in the nearby image and therefore its flow
vector cannot be accurately estimated.

We turn this observation into a per-pixel reliability score as fol-
lows. Given a pixel of interest p, we find two helper pixels p0 and
p1 that are offset at unit distance in the gradient direction d and its
opposite. We compute the projection of the flow vectors at p0 and

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

Fast Depth Densification for Occlusion-aware Augmented Reality • 194:5

Fig. 4. Our flow gradient reliability measure explained on two examples

on a crop from Figure 3. We measure the flow at two helper pixels p0, p1
on either side of the edge, and compute the projections f0, f1 onto the

line perpendicular to the gradient. Left example: the flow projections are

diverging (f1 − f0 > 0), which indicates a reliable edge, since both pixels

are visible in the nearby image. Right example: the flow projections are

converging (f1 − f0 < 0), which indicates an unreliable edge, since at least

one of the pixels might not be visible in the nearby image.

(a) Color image (b) Initial soft depth
edges MF

(c) Spatio-temporal
filtered M̃F

Fig. 5. (b) Depth edges are well identified in the flow gradient image, but not

well aligned with the image edges. (c) We apply spatio-temporal filtering to

reduce noise and ensure the depth edges overlap with their corresponding

image edges. Now they are ready for alignment with the image edges (see

Figure 6).

p1 on d :
f0 = F (p0) · d, f1 = F (p1) · d, (2)

and obtain the reliability score as their difference,

r = f1 − f0. (3)

r will be positive (reliable) for diverging flow projections, and
negative (unreliable) for converging flow projections. Figure 4 illus-
trates this on two examples.

Nowwe can fuse the gradientmagnitude from both nearby images
by selecting at each pixel the more reliable quantity:

MF (p) =

{
Mprev (p), if rprev (p) > rnext (p)
Mnext (p), else (4)

Filtering. The fused gradientmagnitudeMF identifies depth edges
well without getting confused by texture edges (Figure 5a-b). How-
ever, they are not well aligned with color images. To make the
alignment with image edges in the following stage easier, we blur
MF with a wide box filter of size kF = 31, to ensure edges overlap
with their corresponding image edges.

We also suppress noise by applying a temporal median filter that
includes samples from kT = 7 frames. We determine the temporal
neighbors of pixels by estimating a per-frame homography warp
from the SLAM points (using the OpenCV findHomography() func-
tion).
Finally, we normalize MF by dividing it by the 90th percentile

value. This makes the parameter settings more invariant to the video
content.
The final spatio-temporally filtered soft depth edges M̃F are

shown in Figure 5c.

4.3 Localizing the Depth Edges

In this section, we accurately localize the depth edges by thinning
and binarizing them, and aligning them with the color image edges.
We achieve these goals bymodifying the Canny edge detector [1986],
which performs a similar operation just on intensity image edges.

Recall the basic operation of the Canny detector:

(1) Intensity gradient magnitude: Compute the (blurred) gradient
magnitude of the intensity image M̃I (we normalize it by
dividing out the 90th percentile).

(2) Non-maximum suppression: all values of M̃I except the localmax-
ima are suppressed, to thin edges down to a width of a single
pixel.

(3) Double thresholding: Using two thresholds τhigh and τlow the
edge pixels are classified into strong (M̃I >τhigh), weak (τhigh ≥
M̃I ≥τlow), and suppressed edge pixels (τlow> M̃I).

(4) Hysteresis: Every strong edge pixel is selected, but weak edge
pixels are only selected when they are connected to a strong
edge. This effectively removes spurious weak edge pixels.

Figure 6c shows the result of applying the Canny detector on
a color image. The detector identifies and localizes all intensity
edges well. Notably, this set of edges includes also all major depth
edges. This indicates that we can achieve our goal by selectively
suppressing only the texture edges while keeping the depth edges.
We do so by injecting another threshold on the soft depth edge

map M̃F into the algorithm.More precisely, we change the definition
of a strong edge pixel to require not just a high intensity gradient
response (M̃I >τhigh) but also a high response in the soft edge map
(M̃F > τflow). The definition of weak and suppressed edge pixels
remain unchanged.

With this modification we start depth edges only where the soft
edge map indicates a high confidence, but we allow continuing
them into low soft edge response regions as long as there remains
a sufficiently strong image edge. This helps bridging over gaps in
the soft edge map due to noise in the optical flow image. Figure 6e
shows the result of the modified detector. It effectively preserves
most of the depth edges while suppressing most texture edges.

4.4 Densification

In the final stage we use the localized depth edges to control the
propagation of sparse SLAM point depths to the remaining pix-
els. We set this up as a quadratic optimization problem, using the
following constraint terms.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

194:6 • A. Holynski and J. Kopf

(a) Image I (b) Magnitude of
intensity gradient M̃I

(c) Standard Canny detector
using M̃I

(d) Magnitude of
flow gradient M̃D

(e) Modified Canny detector
using M̃I and M̃D

Fig. 6. Localizing and aligning the soft depth edges. (a-b) Input image and corresponding magnitude of intensity gradient. (c) An edge detector that uses this

image selects both texture and depth edges. Strong and weak edge pixels are drawn in bright and dark color, respectively. (d-e) We inject our soft edge map in

the detector algorithm, which results in suppressed texture edges. The remaining edges are mostly depth edges and well aligned with the intensity edges

(Note, that edges are drawn thick here for illustration purposes).

(a) Image I (b) Canny edges (c) Depth densified with Canny (d) Our depth edges (e) Our densification

Fig. 7. The standard Canny edge detector fires on texture edges (b), which causes incorrect discontinuities in the resulting depth map (c). Our algorithm

suppresses most texture edges (d), which leads to a refined depth map (e).

A unary data term encourages approximating the depth of the
SLAM points:

Edata(p) = wsparse(p)
D(p) − Dsparse(p)

2
2. (5)

Dsparse is a depth map obtained by splatting the depths of SLAM
points into single pixels, andwsparse is 1 for all pixels that overlap a
SLAM point and 0 everywhere else.
A second unary data term encourages the solution to be tempo-

rally coherent:

Etemp(p) = wtemp(p)
D(p) − Dtemp(p)

2
2. (6)

Dtemp is a depth map obtained by reprojecting the (dense) pixels of
the previous frame using the projection matrices estimated by the
SLAM system. wtemp is 1 for all pixels that overlap a reprojected
point and 0 everywhere else (splatting gaps, near boundaries).

We use a spatially varying pairwise smoothness term:

Esmooth(p,q) = wpq ∥D(p) − D(q)∥22 , (7)

with the weight

wpq =

{
0, if B(p) + B(q) = 1,
max

(
1 −min(sp , sq), 0

)
, else. (8)

B denotes the binarized depth edge map, computed in the previous
section, and sp =

(
M̃F · M̃I

)
(p), sq =

(
M̃F · M̃I

)
(q). At depth edges

we set the weight to zero to allow the values to drift apart without
any penalty and form a crisp discontinuity. Everywhere else, we
enforce high smoothness if either M̃I is low (textureless regions) or
M̃F is low (possibly texture edge but not a depth edge).
We obtain the following combined continuous quadratic opti-

mization problem:

argmin
D

λd
∑
p

Edata(p) + λt
∑
p

Etemp(p) + λs
∑

(p,q)∈N

Esmooth(p,q), (9)

where N is the set of horizontally and vertically neighboring pixels.
We use the balancing coefficients λd = 1, λt = 0.01, λs = 1.

The solution to Equation 9 is a set of sparse linear equations. It is,
in fact, a standard Poisson problem, for which we have specialized

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

Fast Depth Densification for Occlusion-aware Augmented Reality • 194:7

Table 1. Breakdown of the average per-frame timings of the algorithm

stages.

Algorithm Step Duration
Sparse Reconstruction (DSO-SLAM) 13.8ms
Optical flow, for past and future frame (DIS-Flow) 0.4ms
Soft depth edges 0.2ms
Localized depth edges 12.6ms
Densification 21.3ms
Total 48.4ms

solvers that can optimize it rapidly. We use an implementation of
the LAHBF solver [Szeliski 2006] to optimize it.

Figure 7 shows the impact of suppressing texture edges in the den-
sification. When using standard Canny intensity edges, the resulting
depth maps contains many false depth discontinuities (Figure 7c).
These are mostly absent in our result (Figure 7e).

5 RESULTS & EVALUATION

While our method is ultimately intended to be run in a real-time
setting, e.g., in the viewfinder of a smart phone, we implemented
it in practice to operate on pre-captured video sequences, since it
enables easier debugging and more reproducible results.

We captured and processed a number of video sequences with a
Google Pixel 2 smart phone at full HD resolution (1920×1080 pixels).
Screenshots from each sequence can be seen in Figure 8. The videos
contain indoor and outdoor locations, of a variety of objects and
scenes, often including objects that are hard to reconstruct with
traditional multi-view stereo algorithms, such as moving objects,
water, reflective surfaces, and thin structures.

In the supplementary material we provide the full set of input
videos, final depth maps, as well as videos of the intermediate SLAM
points, soft depth edges, and localized depth edges, in form of a web
page for convenient inspection.

5.1 Effects

We implemented two AR effects (Figure 9) that make use of occlu-
sions and the ability to interact with the dense scene geometry:

Object insertion: place virtual objects in the scene that can be oc-
cluded by real objects.

Lighting effect: insert a point light source that shades the scene with
radial fall-off lighting.

In the supplementarymaterial we demonstrate each effect on several
videos.

5.2 Performance

All results were generated on a PCwith 3.4 GHz 6-core Intel i7-6800K
CPU. Our algorithm only uses the CPU. Our current implementation
processes our 2-megapixel HD videos at an average of 48.3ms per
frame. Table 1 breaks down the timings for various algorithm stages.
While our current implementation is on a desktop computer, a

fast implementation on a phone seems possible because:
• Real-time SLAM has been demonstrated by ARKit and AR-
Core.

• Well optimized Canny runs faster on modern-generation mo-
bile phones (e.g. Google Pixel 2XL and Apple iPhone X) than
our implementation on a desktop3.

• Poisson systems such as Eq. 9 can be solved with highly spe-
cialized solvers, and real-time speeds were achieved a decade
ago by [McCann and Pollard 2008], using an evaluation sys-
tem that is less powerful than today’s phones.

Since these steps comprise over 98% of our runtime, we believe
an optimized phone implementation of our method can achieve
real-time speeds as well.

5.3 Evaluation Metrics

Most MVS and other depth reconstruction algorithms are optimized
for geometric accuracy. However, as mentioned before, for our AR
effects application we have different priorities; see the objectives
stated in Sections 1 and 3.

In order to quantitatively assess our method and objectively com-
pare our method to other baseline algorithms below, we propose
three evaluation metrics that capture how well these objectives are
achieved: (1) Occlusion error penalizes depth edges not being sharp,
(2) Texture error: penalizes depth at texture edges not being smooth,
and (3) Temporal instability: penalizes temporal jitter of static points.
These metrics correspond directly to the first three objectives

stated in Sections 1 and 3. The other two objectives, completeness and
speed are satisfied by design: our results are always 100% complete
and our method operates at near real-time rates.

We describe the three metrics below, and use them in a compara-
tive analysis in the next section.

Annotations. For evaluating the occlusion and texture error we
need ground truth annotations of such occurrences, which we gen-
erated as follows. We selected five datasets (Bones, Cubes, Cutting
Board, Pusheen, Shoes) and from each five random images, for a
total of 25 images. For each image we computed a high quality offline
MVS reconstruction [Schönberger et al. 2016]. We then computed
Canny edges and classify each edge pixel as “occlusion”, “texture” or
“no edge” based on its depth profile. More precisely, we compute the
median depth of 5 unit-spaced pixels on either side perpendicular
to the edge. If that ratio of median depths is between 1 and 1.05 we
consider it a texture edge pixel, if it is above 1.2 we consider it an
occlusion edge pixel, and otherwise we ignore that pixel.
We then recruited five volunteers and asked them to clean up

any errors in the automatic classification. They could only erase
edges but not add new ones. Each volunteer processed five images,
one from each dataset. The final annotations are included in the
supplementary material.

Occlusion Error. This error measures for annotated occlusion pix-
els how crisp and well localized the edge in the depth map is. We
extract a profile of 10 depth samples {di } perpendicular to the edge,
5 on either side, and measure the deviation from an ideal step edge,
after removing the mean and standard deviation:

Eocc =
1
N

∑
i

(
di−µ
σ − si

)2
, (10)

3https://browser.geekbench.com/v4/cpu/9747825

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

194:8 • A. Holynski and J. Kopf

Bones Felt Cubes Tile Wall

Georgian cuttingboard Kitchen Fountain

Alley Garden Chapel Faces Lamppost

Shoes Pusheen Walkup Otters

Fig. 8. Datasets we captured for this paper. Please refer to the supplementary material to see the full videos of input and intermediate and final results. Note

that images have been cropped for visualization. Our datasets consist of both portrait and landscape videos.

Object insertion Virtual point light
Fig. 9. Example occlusion-aware AR effects.

where µ and σ are the mean and standard deviation, respectively,

and si =
{
−1, if i≤N /2
+1, else

is a step function.

Texture Error. Texture edges are color changes in regions that are
not occlusion boundaries. We expect the depth map to be smooth
here, because false depth discontinuities would cause self-occlusion
artifacts or cracks in objects.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

Fast Depth Densification for Occlusion-aware Augmented Reality • 194:9

0

0.5

1

1.5

2

2.5

3

3.5

4

0% 20% 40% 60% 80% 100%

Er
ro

r

Our Result

Bilateral Filter

Bilateral Solver

Color Constraints

(a) Occlusion error (Eq. 10)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0% 20% 40% 60% 80% 100%

(b) Texture error (Eq. 11)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0% 20% 40% 60% 80% 100%

(c) Temporal stability error (Eq. 12)
Fig. 10. Comparing our method against several baselines using our evaluation metrics. The graphs plot the cumulative error histogram for all annotated

samples for five datasets (see text).

Table 2. A comparison of combined error values (lower is better).

Method Ecomb
Bilateral Filter 37.11
Bilateral Solver 4.05
Color Constraints 3.46
Our Result 2.54

The texture error measures for annotated texture edge pixels how
much the depth profile deviates from a flat profile:

Etex =
1
N

∑
i

(
di−µ
µ

)2
. (11)

Note, that, unlike in Eq. 10 we are not dividing by the standard
deviation, since this would amplify the flat profiles. Instead, we
divide by the mean depth to make the error invariant to the scene
scale.

Temporal Stability Error. Abrupt depth changes in the video can
cause flickering when rendering effects. The temporal stability error
penalizes variation in the 3D position of static scene points. For the
five evaluation datasets we track about 100 points on the middle 100
frames with a KLT tracker, and keep all tracks that span all frames.
The error is defined as the variance of the 3D positions that are
obtained when unprojecting the points using the depth map:

Ets =
1
N

100∑
f =1

(
Uf

(
pf ,Df (pf)

)
− µ

)2
. (12)

pf is the tracked point in frame f ,Df is the depth map for the frame,
andUf is the unprojection function, which takes a 2D image coor-
dinate and depth and returns the corresponding 3D world position.
µ = 1

N
∑
f Uf

(
pf ,Df (pf)

)
is the mean 3D world position.

Combined Error. It is useful for parameter tuning to have a single
combined scalar error that balances the various objectives. Since
we consider all three metrics equally important, we determine coef-
ficients that balances out their relative scales:

Ecomb = 0.7 Ẽocc + 65 Ẽtex + 200 Ẽts, (13)

where ·̃ indicates the median across all annotated samples. A com-
parison to the baseline methods can be seen in Figure 2. We obtained
these coefficients by iteratively tuning our method for each metric
separately, and then taking the value that maps the median of each
metric to 1.

5.4 Comparative Evaluation

We compared our algorithm to various baselines using the metrics
defined in the previous section.

Bilateral Solver. We compare against the fast bilateral solver [Bar-
ron and Poole 2016], using the publicly available implementation4.
We use the color frames as reference image for the bilateral solver,
and set the target image t and confidence image c as follows:(

t , c
)
(p) =

{ (
Dsparse(p), wsparse(p)

)
, ifwsparse(p) > 0,(

Dtemp(p), λ
bs
tempwtemp(p)

)
, else, (14)

i.e., for pixels that fall under a SLAM point we use that point’s depth
as target with a confidence of one, and for all other pixels we use the
reprojected points from the previous frame with a lower confidence
λbstemp, to make the result more temporally stable.

We tune the bilateral solver parameters as well as the temporal
parameter λbstemp to minimize the combined error Ecomb and obtain
the following settings:

λ = 1, σxy = 5, σi = 15, σuv = 10, λbstemp = 0.8. (15)

Bilateral Filter. We compare against a joint bilateral median filter
[Petschnigg et al. 2004] guided by the color frames. Because the
SLAM points are very sparse we increase the kernel size in incre-
ments of 10 pixels until there are at least 8 depth inside. To make the
filter temporally coherent we also include samples from Dtemp in
a 10x10 kernel, weighted by a temporal parameter λbftemp. To better
preserve hard edges we use a median.
We tune the bilateral filter parameters as well as the temporal

parameter λbftemp to minimize the combined error Ecomb and obtain

4https://github.com/poolio/bilateral_solver

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

https://github.com/poolio/bilateral_solver

194:10 • A. Holynski and J. Kopf

Table 3. Parameters of our algorithm. We used the default settings provided

here for all results.

Parameter Section Description
kF = 31 4.2 Flow gradient box filter size
kT = 7 4.2 Temporal median window size
kI = 5 4.3 Image box filter size

τhigh = 0.04 4.3 Canny image high threshold
τlow = 0.01 4.3 Canny image low threshold
τflow = 0.3 4.3 Canny flow threshold
λd = 1 4.4 Balancing coefficientsλt = 0.01 4.4
λs = 1 4.4

the following settings:

σspatial = 10, σcolor = 10, λ
bf
temp = 0.85. (16)

Color-based optimization constraints. We also compare against a
variant of our densification that uses only color-based constraints
instead of our estimated depth edges. In Eq. 9 we replace the Esmooth
with the pairwise term by Levin et al. [2004].

We fix λs = 1 and tune the remaining modified densification
parameters to minimize the combined error Ecomb and obtain the
following settings:

λd = 0.1, λt = 0.1, σr = 0.01. (17)

Discussion. We tuned our method as well as the baselines to mini-
mize the combined error (Eq. 13). Then, we evaluated the individual
metrics on the five evaluation datasets, and plot all samples in Fig-
ure 10. Our method provides a substantial improvement over the
baselines in all metrics. For a qualitative comparison, please refer to
the supplementary material.

5.5 Parameters

In Table 3 we lists all the parameters of our algorithm and their
default settings. We omit parameters of the DSO SLAM and DIS-
Flow components, since we did not change them from their default
settings. All results shown in the paper and the supplementary
material were generated with the same settings.
We tuned our method by minimizing the combined error Ecomb,

iteratively fixing some groups of parameters while varying others
until we reached a local minimum.

5.6 Limitations

Our method has a number of failure cases inherited from the under-
lying SLAM algorithm:

View-dependent appearance: Similar tomost 3D reconstructionmeth-
ods our method has problems dealing with reflective and
specular materials. This is actually a limitation of the SLAM
component, which produces points at incorrect depths in
these cases.

Small translation: The SLAM algorithm requires sufficient amount
of translational motion to produce 3D points.

Textureless surfaces: The SLAM algorithm requires textured sur-
faces in order to accurately localize and track 3D points.

Missing SLAM points: We cannot recover the depth for objects that
stick out from their surrounding but do not have any SLAM
points on them. This problem is very present in the TileWall
dataset, which misses points on the foreground stone railing.

Dynamic scenes: Our method tolerates slight scene motion, such as
in the Faces dataset, but does not produce good results in
the presence for highly dynamic or transient objects. Nev-
ertheless, our method is quick to recover once the dynamic
objects have stabilized. An example of this can be seen in the
Walkup dataset.

Additionally, our algorithm has its own limitations that lead to
interesting avenues for future work:

Delay: Because we are computing optical flow to a future frame our
method is not fully causal but outputs results with a slight de-
lay (depending on the spacing of key frames). In practice, we
find that under regular camera motion, optimal quality can be
achieved while still enforcing the lookahead to never exceed
7 frames (or 116ms at 60Hz). We have also experimented with
a causal variant of our method, which uses only previous
frames. Examples can be seen in the Alley, Georgian, and
Lamppost datasets, which all include a portion of the video
where the camera stops moving, i.e. points at which there
is no future keyframe to use as a flow reference. In these
cases, the resulting depth video does not suffer greatly in
quality, as a result of the temporal constraints, filtering, and
initialization.

Low geometric accuracy: Ourmethod is not suitable for applications
that require high geometric accuracy. It is, for example, not
suitable for lighting effects that rely on accurate scene nor-
mals.

Floating layers: In cases where an object has an occlusion edge on
only one side, but has strong texture edges on all sides, the
Canny algorithm may trace around the entire object. This
usually does not affect the final depth map, except in cases
where there are very few SLAM points on the occluding
object, resulting in a "floating layer" effect. An example can
be found in the Shoes sequence, where the bottom of the feet
seem to be floating in front of the floor.

6 CONCLUSION

In this paper we have presented a fast algorithm for propagating a
sparse depth source, such as SLAM points, to all remaining pixels
in a video sequence. The resulting dense depth video is spatio-
temporally smooth except at depth edges where it exhibits sharp
discontinuities.
These properties make our algorithm particularly useful for AR

video effects. Due to the absence of holes in the depth maps, the
effects can fully interact with the scene geometry, and, for example,
be occluded by real objects.

REFERENCES

Robert Anderson, David Gallup, Jonathan T. Barron, Janne Kontkanen, Noah Snavely,
Carlos Hernandez Esteban, Sameer Agarwal, and Steven M. Seitz. 2016. Jump:

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

Fast Depth Densification for Occlusion-aware Augmented Reality • 194:11

Virtual Reality Video. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 35, 6
(2016), article no. 198.

Jonathan T Barron and Ben Poole. 2016. The Fast Bilateral Solver. European Conference
on Computer Vision (ECCV) (2016), 617–632.

Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, Deqing Sun, Sylvain Paris, and
Hanspeter Pfister. 2015. Blind Video Temporal Consistency. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia 2015) 34, 6 (2015).

John Canny. 1986. A Computational Approach to Edge Detection. IEEE Trans. Pattern
Anal. Mach. Intell. 8, 6 (1986), 679–698.

P. Dollár, Z. Tu, and S. Belongie. 2006. Supervised Learning of Edges and Object
Boundaries. In CVPR.

Jakob Engel, Vladlen Koltun, and Daniel Cremers. 2018. Direct Sparse Odometry.
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2018).

Jakob Engel, Thomas Schöps, and Daniel Cremers. 2014. LSD-SLAM: Large-Scale Direct
Monocular SLAM. European Conference on Computer Vision (ECCV) (2014), 834–849.

Yasutaka Furukawa and Carlos Hernández. 2015. Multi-View Stereo: A Tutorial. Foun-
dations and Trends. in Computer Graphics and Vision 9, 1-2 (2015), 1–148.

Asmaa Hosni, Christoph Rhemann, Michael Bleyer, and Margrit Gelautz. 2011. Tempo-
rally consistent disparity and optical flow via efficient spatio-temporal filtering. In
Pacific-Rim Symposium on Image and Video Technology. Springer, 165–177.

Till Kroeger, Radu Timofte, Dengxin Dai, and Luc Van Gool. 2016. Fast Optical Flow
using Dense Inverse Search. Proceedings of the European Conference on Computer
Vision (ECCV) (2016).

Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization Using Optimization.
ACM Trans. Graph. 23, 3 (2004), 689–694.

D. Scaramuzza M. Pizzoli, C. Forster. 2014. REMODE: Probabilistic, monocular dense
reconstruction in real time. International Conference on Robotics and Automation
(ICRA) (2014), 2609–2616.

James McCann and Nancy S Pollard. 2008. Real-time gradient-domain painting. In
ACM Transactions on Graphics (TOG), Vol. 27. ACM, 93.

Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. 2011. DTAM:
Dense Tracking and Mapping in Real-time. International Conference on Computer
Vision (ICCV) (2011), 2320–2327.

Liyuan Pan, Yuchao Dai, Miaomiao Liu, and Fatih Porikli. 2018. Depth Map Completion
by Jointly Exploiting Blurry Color Images and Sparse Depth Maps. In Applications
of Computer Vision (WACV), 2018 IEEE Winter Conference on. IEEE, 1377–1386.

Jaesik Park, Hyeongwoo Kim, Yu-Wing Tai, Michael S Brown, and In So Kweon. 2014.
High-quality depth map upsampling and completion for RGB-D cameras. IEEE
Transactions on Image Processing 23, 12 (2014), 5559–5572.

Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe,
and Kentaro Toyama. 2004. Digital Photography with Flash and No-flash Image
Pairs. ACM Trans. Graph. 23, 3 (2004), 664–672.

J.M.M. Montiel R. Mur-Artal and Juan D. Tardos. 2015. ORB-SLAM: a Versatile and
Accurate Monocular SLAM System. IEEE Transactions on Robotics 31, 5 (2015),
1147–1163.

Christian Richardt, Douglas Orr, Ian Davies, Antonio Criminisi, and Neil A Dodgson.
2010. Real-time spatiotemporal stereo matching using the dual-cross-bilateral grid.
In European conference on Computer vision. Springer, 510–523.

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
2016. Pixelwise View Selection for Unstructured Multi-View Stereo. (2016).

Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski.
2006. A comparison and evaluation of multi-view stereo reconstruction algorithms.
In null. IEEE, 519–528.

Qi Shan, Brian Curless, Yasutaka Furukawa, Carlos Hernández, and Steven M. Seitz.
2014. Occluding Contours for Multi-view Stereo. Conference on Computer Vision
and Pattern Recognition (2014), 4002–4009.

Jan Stühmer, Stefan Gumhold, and Daniel Cremers. 2010. Real-time Dense Geometry
from a Handheld Camera. Proceedings of the 32Nd DAGM Conference on Pattern
Recognition (2010), 11–20.

Richard Szeliski. 2006. Locally Adapted Hierarchical Basis Preconditioning. ACM Trans.
Graph. 25, 3 (2006), 1135–1143.

Chamara Saroj Weerasekera, Thanuja Dharmasiri, Ravi Garg, Tom Drummond, and
Ian Reid. 2018. Just-in-Time Reconstruction: Inpainting Sparse Maps using Single
View Depth Predictors as Priors. arXiv preprint arXiv:1805.04239 (2018).

Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong, and Hujun Bao. 2009. Consistent Depth
Maps Recovery from a Video Sequence. Transactions on Pattern Analysis andMachine
Intelligence (TPAMI) 31, 6 (2009), 974–988.

Yinda Zhang and Thomas Funkhouser. 2018. Deep Depth Completion of a Single
RGB-D Image. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 175–185.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 194. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Previous Work
	3 Overview
	4 Method
	4.1 Camera Parameters and Sparse Depth
	4.2 Soft Depth Edges
	4.3 Localizing the Depth Edges
	4.4 Densification

	5 Results & Evaluation
	5.1 Effects
	5.2 Performance
	5.3 Evaluation Metrics
	5.4 Comparative Evaluation
	5.5 Parameters
	5.6 Limitations

	6 Conclusion
	References

